Titin isoform expression in normal and hypertensive myocardium.

نویسندگان

  • Chad M Warren
  • Maria C Jordan
  • Kenneth P Roos
  • Paul R Krzesinski
  • Marion L Greaser
چکیده

OBJECTIVE Titin isoform expression patterns were examined to explain previously observed genetic differences in rat cardiac passive tension. METHODS Rat ventricles from male spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats (normotensive) were used to analyze the titin isoform patterns. The hypertensive status was verified by blood pressure measurements and heart weight to body weight ratios. Gel electrophoresis and scanning densitometry were performed to determine ratios of myosin heavy chain and titin isoforms expressed. In situ hybridization using a cRNA probe specific for N2BA titin and a positive control in the N2B unique region was used to demonstrate tissue location of the titin message. RESULTS Regression analysis of titin isoform ratios, myosin heavy chain isoform ratios, and heart weight to body weight ratios all suggest a smaller proportion of N2BA titin (longer isoform) was expressed in rat left ventricles with increased hypertrophy. In situ hybridization showed that the N2BA and N2B isoforms were co-expressed within most of the cardiomyocytes. Agarose gel electrophoresis demonstrated two different N2BA titin isoforms in all rat ventricles. CONCLUSIONS Expression of less N2BA and more N2B titin in response to pressure overload will result in higher passive tension upon stretch at a given sarcomere length and thus affect cardiac performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness.

BACKGROUND Titin contains a molecular spring segment that underlies passive myocardial stiffness. Myocardium coexpresses titin isoforms with molecular spring length variants and, consequently, distinct stiffness characteristics: the stiff N2B isoform (short spring) and more compliant N2BA isoform (long spring). We tested whether changes in titin isoform expression occur in the diastolic dysfunc...

متن کامل

Hypothyroidism leads to increased collagen-based stiffness and re-expression of large cardiac titin isoforms with high compliance.

Because long-term hypothyroidism results in diastolic dysfunction, we investigated myocardial passive stiffness in hypothyroidism and focused on the possible role of titin, an important determinant of diastolic stiffness. A rat model of hypothyroidism was used, obtained by administering propylthiouracil (PTU) for times that varied from 1 month (short-term) to 4 months (long-term). Titin express...

متن کامل

Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium.

Developmental changes in contractile behavior are known to occur during fetal and postnatal heart development. In this study, we examined whether adaptations take place in titin. A range of species was used to evaluate titin isoform expression and altered function during cardiac muscle development. A novel titin exon microarray that allows all 363 titin exons to be monitored simultaneously was ...

متن کامل

Titin isoform switch in ischemic human heart disease.

BACKGROUND Ischemia-induced cardiomyopathy usually is accompanied by elevated left ventricular end-diastolic pressure, which follows from increased myocardial stiffness resulting from upregulated collagen expression. In addition to collagen, a main determinant of stiffness is titin, whose role in ischemia-induced left ventricular stiffening was studied here. Human heart sarcomeres coexpress 2 p...

متن کامل

Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction.

AIMS Heart failure (HF) with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality. Key alterations in HFpEF include increased left ventricular (LV) stiffness and abnormal relaxation. We hypothesized that myofilament protein phosphorylation and function are deranged in experimental HFpEF vs. normal myocardium. Such alterations may involve the giant elastic protein titi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2003